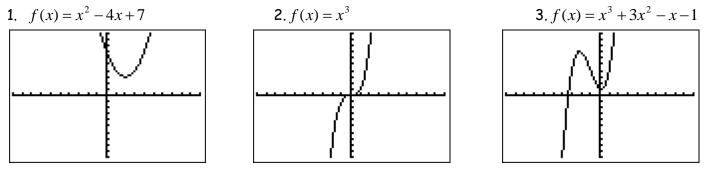
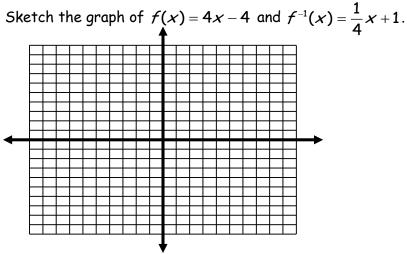
| Algebra 2/Trig1              |                                 | Name                      |                                      |  |
|------------------------------|---------------------------------|---------------------------|--------------------------------------|--|
| Unit 4 - Introduction to Fun | actions                         | Block Date _              |                                      |  |
|                              |                                 |                           |                                      |  |
| VI. Finding the Domain (co   | <u>nt.):</u>                    |                           |                                      |  |
| From A Function:             |                                 |                           |                                      |  |
| Domain: The set of a         | all real numbers for which      | the function is defi      | ned.                                 |  |
| The Domain of a Fu           | nction: Always All Real Nu      | nbers, <u>EXCEPT</u> fo   | r the following cases.               |  |
| Fractions:                   |                                 | Radicals:                 |                                      |  |
|                              |                                 |                           |                                      |  |
|                              |                                 |                           |                                      |  |
|                              |                                 |                           |                                      |  |
|                              |                                 |                           |                                      |  |
|                              |                                 |                           |                                      |  |
| Example: Ex                  |                                 | Exa                       | Example:                             |  |
|                              |                                 |                           |                                      |  |
|                              |                                 |                           |                                      |  |
|                              |                                 |                           |                                      |  |
| <u>Practice:</u>             |                                 |                           |                                      |  |
| 1. $f(x) = x^2 - 25$         | <b>2.</b> $f(x) = \frac{2x}{x}$ | 3. $f(x) = \frac{x+6}{2}$ | 4. $f(x) = \frac{x-5}{\sqrt{x^2-9}}$ |  |
|                              | $x^2 - 7x + 10$                 | $x^{2}-6$                 | 4 $\sqrt{x^2-9}$                     |  |
|                              |                                 |                           |                                      |  |

## VII. Inverse Functions:

An inverse is a relation that performs the opposite operation on x (the domain). The domain of f(x) is the range of  $f^{-1}(x)$ .


# Examples:

1. 
$$f(x) = x - 3$$
 2.  $g(x) = \sqrt{x}, x \ge 0$ 
 3.  $h(x) = 2x$ 
 $f^{-1}(x) =$ 
 $g^{-1}(x) =$ 
 $h^{-1}(x) =$ 


### How do we know if an inverse function exists?

- Inverse functions only exist if the original function is \_\_\_\_\_\_ (which means there are no repeated y-values.
- Horizontal Line Test: Used to test if the function is one to one.
  - If the horizontal line intersects the graph more than once, then it is not one to one.
  - Therefore there is not an inverse function and we call it an inverse relation.

**Examples:** Look at the following graphs and determine if an inverse function is possible.



## Finding Inverse Functions Graphically:



We say the function and its inverse are symmetric over the line \_\_\_\_\_.

### Finding the Inverse Function Algebraically:

#### Steps

- 1. Use the horizontal line test to determine if f has an inverse function.
- 2. Write as y=
- 3. Switch x and y
- 4. Solve for y
- 5. Rewrite as  $y^{-1}$  or  $f^{-1}(x)$

# Examples:

1. 
$$f(x) = -4x - 9$$
  
2.  $f(x) = \frac{5 - 3x}{2}$   
3.  $f(x) = \sqrt[3]{10 + x}$